[3.11.y.z extended stable] Patch "futex: Make lookup_pi_state more robust" has been added to staging queue

Luis Henriques luis.henriques at canonical.com
Thu Jun 12 14:00:54 UTC 2014


This is a note to let you know that I have just added a patch titled

    futex: Make lookup_pi_state more robust

to the linux-3.11.y-queue branch of the 3.11.y.z extended stable tree 
which can be found at:

 http://kernel.ubuntu.com/git?p=ubuntu/linux.git;a=shortlog;h=refs/heads/linux-3.11.y-queue

If you, or anyone else, feels it should not be added to this tree, please 
reply to this email.

For more information about the 3.11.y.z tree, see
https://wiki.ubuntu.com/Kernel/Dev/ExtendedStable

Thanks.
-Luis

------

>From a2aaf280146066be27e861a2fdf0c3baaee6d0d7 Mon Sep 17 00:00:00 2001
From: Thomas Gleixner <tglx at linutronix.de>
Date: Tue, 3 Jun 2014 12:27:08 +0000
Subject: futex: Make lookup_pi_state more robust

commit 54a217887a7b658e2650c3feff22756ab80c7339 upstream.

The current implementation of lookup_pi_state has ambigous handling of
the TID value 0 in the user space futex.  We can get into the kernel
even if the TID value is 0, because either there is a stale waiters bit
or the owner died bit is set or we are called from the requeue_pi path
or from user space just for fun.

The current code avoids an explicit sanity check for pid = 0 in case
that kernel internal state (waiters) are found for the user space
address.  This can lead to state leakage and worse under some
circumstances.

Handle the cases explicit:

       Waiter | pi_state | pi->owner | uTID      | uODIED | ?

  [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
  [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid

  [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid

  [4]  Found  | Found    | NULL      | 0         | 1      | Valid
  [5]  Found  | Found    | NULL      | >0        | 1      | Invalid

  [6]  Found  | Found    | task      | 0         | 1      | Valid

  [7]  Found  | Found    | NULL      | Any       | 0      | Invalid

  [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
  [9]  Found  | Found    | task      | 0         | 0      | Invalid
  [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid

 [1] Indicates that the kernel can acquire the futex atomically. We
     came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.

 [2] Valid, if TID does not belong to a kernel thread. If no matching
     thread is found then it indicates that the owner TID has died.

 [3] Invalid. The waiter is queued on a non PI futex

 [4] Valid state after exit_robust_list(), which sets the user space
     value to FUTEX_WAITERS | FUTEX_OWNER_DIED.

 [5] The user space value got manipulated between exit_robust_list()
     and exit_pi_state_list()

 [6] Valid state after exit_pi_state_list() which sets the new owner in
     the pi_state but cannot access the user space value.

 [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.

 [8] Owner and user space value match

 [9] There is no transient state which sets the user space TID to 0
     except exit_robust_list(), but this is indicated by the
     FUTEX_OWNER_DIED bit. See [4]

[10] There is no transient state which leaves owner and user space
     TID out of sync.

Signed-off-by: Thomas Gleixner <tglx at linutronix.de>
Cc: Kees Cook <keescook at chromium.org>
Cc: Will Drewry <wad at chromium.org>
Cc: Darren Hart <dvhart at linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds at linux-foundation.org>
Signed-off-by: Luis Henriques <luis.henriques at canonical.com>
---
 kernel/futex.c | 134 +++++++++++++++++++++++++++++++++++++++++++++------------
 1 file changed, 106 insertions(+), 28 deletions(-)

diff --git a/kernel/futex.c b/kernel/futex.c
index 6edcc9aa0dfe..ad971d0f0be0 100644
--- a/kernel/futex.c
+++ b/kernel/futex.c
@@ -593,10 +593,58 @@ void exit_pi_state_list(struct task_struct *curr)
 	raw_spin_unlock_irq(&curr->pi_lock);
 }

+/*
+ * We need to check the following states:
+ *
+ *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
+ *
+ * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
+ * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
+ *
+ * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
+ *
+ * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
+ * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
+ *
+ * [6]  Found  | Found    | task      | 0         | 1      | Valid
+ *
+ * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
+ *
+ * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
+ * [9]  Found  | Found    | task      | 0         | 0      | Invalid
+ * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
+ *
+ * [1]	Indicates that the kernel can acquire the futex atomically. We
+ *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
+ *
+ * [2]	Valid, if TID does not belong to a kernel thread. If no matching
+ *      thread is found then it indicates that the owner TID has died.
+ *
+ * [3]	Invalid. The waiter is queued on a non PI futex
+ *
+ * [4]	Valid state after exit_robust_list(), which sets the user space
+ *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
+ *
+ * [5]	The user space value got manipulated between exit_robust_list()
+ *	and exit_pi_state_list()
+ *
+ * [6]	Valid state after exit_pi_state_list() which sets the new owner in
+ *	the pi_state but cannot access the user space value.
+ *
+ * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
+ *
+ * [8]	Owner and user space value match
+ *
+ * [9]	There is no transient state which sets the user space TID to 0
+ *	except exit_robust_list(), but this is indicated by the
+ *	FUTEX_OWNER_DIED bit. See [4]
+ *
+ * [10] There is no transient state which leaves owner and user space
+ *	TID out of sync.
+ */
 static int
 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
-		union futex_key *key, struct futex_pi_state **ps,
-		struct task_struct *task)
+		union futex_key *key, struct futex_pi_state **ps)
 {
 	struct futex_pi_state *pi_state = NULL;
 	struct futex_q *this, *next;
@@ -609,12 +657,13 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
 	plist_for_each_entry_safe(this, next, head, list) {
 		if (match_futex(&this->key, key)) {
 			/*
-			 * Another waiter already exists - bump up
-			 * the refcount and return its pi_state:
+			 * Sanity check the waiter before increasing
+			 * the refcount and attaching to it.
 			 */
 			pi_state = this->pi_state;
 			/*
-			 * Userspace might have messed up non-PI and PI futexes
+			 * Userspace might have messed up non-PI and
+			 * PI futexes [3]
 			 */
 			if (unlikely(!pi_state))
 				return -EINVAL;
@@ -622,44 +671,70 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
 			WARN_ON(!atomic_read(&pi_state->refcount));

 			/*
-			 * When pi_state->owner is NULL then the owner died
-			 * and another waiter is on the fly. pi_state->owner
-			 * is fixed up by the task which acquires
-			 * pi_state->rt_mutex.
-			 *
-			 * We do not check for pid == 0 which can happen when
-			 * the owner died and robust_list_exit() cleared the
-			 * TID.
+			 * Handle the owner died case:
 			 */
-			if (pid && pi_state->owner) {
+			if (uval & FUTEX_OWNER_DIED) {
 				/*
-				 * Bail out if user space manipulated the
-				 * futex value.
+				 * exit_pi_state_list sets owner to NULL and
+				 * wakes the topmost waiter. The task which
+				 * acquires the pi_state->rt_mutex will fixup
+				 * owner.
 				 */
-				if (pid != task_pid_vnr(pi_state->owner))
+				if (!pi_state->owner) {
+					/*
+					 * No pi state owner, but the user
+					 * space TID is not 0. Inconsistent
+					 * state. [5]
+					 */
+					if (pid)
+						return -EINVAL;
+					/*
+					 * Take a ref on the state and
+					 * return. [4]
+					 */
+					goto out_state;
+				}
+
+				/*
+				 * If TID is 0, then either the dying owner
+				 * has not yet executed exit_pi_state_list()
+				 * or some waiter acquired the rtmutex in the
+				 * pi state, but did not yet fixup the TID in
+				 * user space.
+				 *
+				 * Take a ref on the state and return. [6]
+				 */
+				if (!pid)
+					goto out_state;
+			} else {
+				/*
+				 * If the owner died bit is not set,
+				 * then the pi_state must have an
+				 * owner. [7]
+				 */
+				if (!pi_state->owner)
 					return -EINVAL;
 			}

 			/*
-			 * Protect against a corrupted uval. If uval
-			 * is 0x80000000 then pid is 0 and the waiter
-			 * bit is set. So the deadlock check in the
-			 * calling code has failed and we did not fall
-			 * into the check above due to !pid.
+			 * Bail out if user space manipulated the
+			 * futex value. If pi state exists then the
+			 * owner TID must be the same as the user
+			 * space TID. [9/10]
 			 */
-			if (task && pi_state->owner == task)
-				return -EDEADLK;
+			if (pid != task_pid_vnr(pi_state->owner))
+				return -EINVAL;

+		out_state:
 			atomic_inc(&pi_state->refcount);
 			*ps = pi_state;
-
 			return 0;
 		}
 	}

 	/*
 	 * We are the first waiter - try to look up the real owner and attach
-	 * the new pi_state to it, but bail out when TID = 0
+	 * the new pi_state to it, but bail out when TID = 0 [1]
 	 */
 	if (!pid)
 		return -ESRCH;
@@ -692,6 +767,9 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
 		return ret;
 	}

+	/*
+	 * No existing pi state. First waiter. [2]
+	 */
 	pi_state = alloc_pi_state();

 	/*
@@ -812,7 +890,7 @@ retry:
 	 * We dont have the lock. Look up the PI state (or create it if
 	 * we are the first waiter):
 	 */
-	ret = lookup_pi_state(uval, hb, key, ps, task);
+	ret = lookup_pi_state(uval, hb, key, ps);

 	if (unlikely(ret)) {
 		switch (ret) {
@@ -1415,7 +1493,7 @@ retry_private:
 			 * rereading and handing potential crap to
 			 * lookup_pi_state.
 			 */
-			ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
+			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
 		}

 		switch (ret) {
--
1.9.1





More information about the kernel-team mailing list