Nested items file:///home/ian/Projects/bzr/core/nested-userdoc/d...

Nested items

Introducing nested items

For many large projects, it is often useful to incorporate libraries maintained elsewhere
or to construct them from multiple subprojects. While it is easy for a single user to
setup a particular layout of multiple branches by hand, the different branches really
need to be linked together if others are to reproduce the desired layout, and if the
relationships are going to be managed over time.

Bazaar has good support for building and managing external libraries and subprojects
via a feature known as nested items. In particular, nearly all of Bazaar's commonly
used commands understand nested items and Do The Right Thing as explained below.
In general, nested items are stored in directories of a containing branch. The
relationship is hierarchical: the containing branch knows about its nested items but
nested items are unaware of the branch (or branches) containing them.

At the moment, nested branches are the only type of nested item supported though
nested files may be supported in the future. Nested branches may contain other nested
branches as required.

Note: This feature requires a recent branch format such as 2.0 or later.

Nesting an external project

To link an external project into a branch, use the branch command with the --nested
option like this:

bzr branch --nested SOURCE-URL TARGET-DIR

For example, assuming you already have a src/1ib directory where libraries are kept:

bzr branch --nested http://example.com/xmlsaxlib src/lib/sax

This will create a nested branch in the src/1ib/sax directory, join it into the containing
branch and save the source location.

If you now run bzr status, it will show the nested branch as uncommitted changes like
this:

+ src/lib/sax
+ src/lib/sax/README
+ src/lib/sax/parser.py

To record this change, use the commit command as you normally would:

bzr commit -m "added SAX parsing library"

1o0f7 08/05/09 01:49



Nested items file:///home/ian/Projects/bzr/core/nested-userdoc/d...

Note that Bazaar stores the tip revision of each nested branch. This is an important
feature in that it's then easy to reproduce the exact combination of libraries used for
historical revisions. It also means that other developers pulling or merging your
changes will get nested branches created for them at the right revisions of each.

Refreshing a nested branch

As bugs are fixed and enhancements are made to nested projects, you will want to
update the version being used. To do this, pull the latest version of the nested branch.
For example:

bzr pull src/lib/sax

If the latest revision is too unstable, you can always use the -r option on the putll
command to nominate a particular revision or tag.

Now that you have the required version of the code, you can make any required
adjustments (e.g. API changes), run your automated tests and commit something like
this:

view src/lib/sax/README

(hack, hack, hack)

make test

bzr commit -m "upgraded SAX library to version 2.1.3"

Changing a nested branch

As well as keeping track of which revisions of external libraries are used over time, one
of the reasons for nesting projects is to make minor changes. You may want to do this
in order to fix and track particular bugs you need addressed. In other cases, you may
want to make various local enhancements that aren't valuable outside the context of
your project.

As support for nested branches is integrated into most commonly used commands, this
is actually quite easy to do: simply make the change to the required files as you
normally would! For example:

edit src/lib/sax/parser.py
bzr commit -m "fix bug #42 in sax parser"

Note that Bazaar is smart enough to recurse by default into nested branches, commit
changes there, and commit the new nested branch tips in the current branch. Both
commits get the same commit message.

If you want to only commit the change to a nested branch for now, you can change into
the nested branch before running commit like this:

cd src/lib/sax
bzr commit -m "fix bug #42 in sax parser"

Alternatively, you can use a selective commit like this:

20f7 08/05/09 01:49



Nested items file:///home/ian/Projects/bzr/core/nested-userdoc/d...

bzr commit -m "fix bug #42 in sax parser" src/lib/sax

Reviewing nested branch changes

Just like commit, the status and diff commands implicitly recurse into nested branches.
In the case of status, it shows both the nested branch as having a pending change as
well as the items within it that have changed. For example:

M src/lib/sax
M src/lib/sax/parser.py

Once again, if you change into a nested branch though, status and diff will operate
just on that branch and not recurse upwards by default.

Browsing nested branch history

As nested branches have their own history, the 1og command shows just the history of
the containing branch. To see the history for a nested branch, nominate the branch
explicitly like this:

bzr log src/lib/sax

Note however that 1og -v and 1og -p on the containing branch will show what files in
nested branches were changed in each revision.

Undoing nested branch changes

While committing in a containing branch will commit in nested branches by default,
uncommit works in the opposite way, i.e. it recurses up by default, not down. As
explained above, if you make a change to a nested branch like this:

edit src/lib/sax/parser.py
bzr commit -m "fix bug #42 in sax parser"

then two commits are actually done: one to the nested branch and one to the current
branch. The way to undo that commit pair is:

bzr uncommit src/lib/sax

If you uncommit the current branch, then just that commit is undone and the commit to
the nested branch is left intact. The reason for this behaviour is simple: Bazaar doesn't
know whether the commits were done as multiple steps or not and whether you want
one or both commits undone. In comparison, it doesn't have a choice if you uncommit
the change made to the nested branch. In that case, it must rollback the higher level
commit because the referenced tip revision no longer (logically) exists.

Splitting out a project

If you already have a large project and wish to partition it into reusable subprojects,

3of7 08/05/09 01:49



Nested items file:///home/ian/Projects/bzr/core/nested-userdoc/d...

use the split command. This takes an existing directory and makes it a separate
branch. For example, imagine you have a directory holding UI widgets that another
project would like to leverage. You can make it a separate branch like this:

bzr split src/uiwidgets

To make the new project available to others, push it to a shared location like this:

cd src/uiwidgets
bzr push bzr://example.com/uiwidgets

You also need to link it back into the original project as a nested branch using the join
command like this (assuming the current directory is src/uiwidgets):

bzr join --nested .
bzr commit -m "uiwidgets is now a nested project"

Similar to branch --nested, join --nested joins the nominated directory (which must
hold a branch) into the containing branch and saves the branch's public location, if any,
as its location.

Updating nested branch locations

As well as storing the tip of each nested revision, Bazaar keeps track of the location of
nested branches. Unlike tip revisions though, nested branch locations are not tracked
over time. While new locations are propagated by the expected commands (e.g. pult,
merge, update, push, commit on @ bound branch), any existing values are left untouched
by merge etc. This behaviour is explicit: it simplifies bootstrapping of locations while
allowing users to provide custom locations that refer to local mirrors.

The nested command is used to list, view and manage nested branch locations. To view
all locations:

bzr nested

To view the location of a single nested branch:

bzr nested DIR

To update the location of a nested branch:

bzr nested DIR LOCATION

There are multiple reasons for changing the location of a branch:

to change a read-only location to a read-write location or vice versa
to change an absolute location to a relative location or vice versa
to handle genuine moves of the master location

to refer to a local mirror.

4 of 7 08/05/09 01:49



Nested items file:///home/ian/Projects/bzr/core/nested-userdoc/d...

If a nested branch has a read-only location (e.g. a http URL), then local changes cannot
be committed to that nested branch. This can be a useful 'firewall' but it's generally
more useful long term to ensure read-write locations are used.

There is limited support for specifying locations relative to the location of the
containing branch. Relative locations begin with ../ like this:

bzr nested lib/osutils ../osutils

Relative locations are often more useful than absolute locations because they:

e Make it easier to move a related set of projects.
e Imply the transport used to access nested branches.

For example, if you have a project which is read-only to some (over http say) and
read-write to others (over sftp say), then relative locations will ensure both groups
fetch nested branches using the best transport for them.

To delete the location of a nested branch:

bzr nested --delete DIR

The primary reason for using the --delete option is to remove a reference to a local
mirror. To clear out all values:

bzr nested --delete-all

To restore default locations after deleting one or more values, simply pull the
containing branch.

When master locations are moved, it's the responsibility of the project administrators
to update the locations stored with the central 'master' branch. Once that is done, they
can send email asking users to run bzr nested --delete-all followed by bzr pull.

Virtual projects

By design, Bazaar is strict about tracking the actual revisions used of nested branches
over time. Without this, projects cannot accurately reproduce exactly what was used to
make a given build. There are isolated use cases though where is advantageous to say
"give me the latest tip of these loosely coupled branches". To do this, create a small
'virtual project' which is just a bunch of unpegged nested branches. To mark nested
branches as unpegged, use the --no-pegged option of the nested command like this:

bzr nested --no-pegged [DIR]

To stop the nested branch tips from floating and to begin recording the tip revisions
again, use the pegged option:

bzr nested --pegged [DIR]

50f7 08/05/09 01:49



Nested items

6 of 7

file:///home/ian/Projects/bzr/core/nested-userdoc/d...

After changing whether one or more nested branches are pegged or not, you need to
commit the branch to record that metadata. (The pegged state is recorded over time.)

For example, you may be managing a company intranet site as a project which is
nothing more than a list of unrelated departmental websites bundled together. You can
set this up like this:

bzr init intranet-site

cd intranet-site

bzr branch --nested bzr://ourserver/websites/research
bzr branch --nested bzr://ourserver/websites/development
bzr branch --nested bzr://ourserver/websites/support

bzr branch --nested bzr://ourserver/websites/hr

bzr nested --no-pegged

bzr commit -m "initial configuration of intranet-site"

Publishing the overall site is then as easy as going to the server hosting your intranet
and running something like:

bzr branch http://mymachine//projects/intranet-site

Refreshing the overall site is as easy as:

bzr pull

Virtual projects are also useful for providing a partial 'view' over a large project
containing a large number of subprojects. For example, you may be working on an
office suite and have a bunch of developers that only care about the word processor.
You can create a virtual project for them like this:

bzr init wg-modules
cd wp-modules

bzr branch --nested ../common

bzr branch --nested ../printing

bzr branch --nested ../spellchecker

bzr branch --nested ../wordprocessor

bzr nested --no-pegged

bzr commit -m "initial configuration of wp-modules"

Those developers can then get bootstrapped faster and have just the subprojects they
care about by branching from wp-modules.

Nested branch tips & tricks

As explained above, most of Bazaar's commonly used commands recurse downwards
into nested branches by default. To prevent this recursion, use the --no-recurse-nested
option on various commands (including commit, status and diff) that support it.

Thanks to plugins like bzr-svn and bzr-git, Bazaar has strong support for transparently

accessing branches managed by foreign VCS tools. This means that Bazaar can support
projects where nested branches are hosted in supported foreign systems. For example,
to nest a library maintained in Subversion:

bzr branch --nested svn://example.com/xmlhelpers src/lib/xmlhelpers

08/05/09 01:49



Nested items file:///home/ian/Projects/bzr/core/nested-userdoc/d...

If you want revisions to be committed both to a remote location and a local location,
make the relevant nested branch a bound branch.

If you need to manage a pile of local enhancements over and above a nested branch
maintained upstream, you'll need to use merge (and commit), not pult, to fetch the
upstream changes. Alternatively, consider making the nested branch a loom. See the
bzr-loom plugin for details on using a loom.

As you'd expect, a nested branch can be moved or deleted using the normal
commands. For example, after splitting out a subproject, you may want to change its
location like this:

bzr mv src/uiwidgets src/lib/uiwidgets
bzr commit -m "move uiwidgets into src/lib"

The remove command deletes a nested branch when required like this:

bzr remove src/lib/ancientDB
bzr commit -m "delete ancientDB library - no longer used"

Things to be aware of

Commands like commit and push need online access to the locations for nested branches
which have updated their tip. In particular, commit will update any changed nested
branches first and only commit to the containing branch if all nested branch commits
succeed. If you are working offline, you may want to ensure your have a local mirror
location defined for nested branches you are likely to tweak. Alternatively, the
no-recurse-nested option to the commit command might to useful to commit some
changes, leaving the nested branch commits until you are back online.

A given top level branch cannot contain multiple copies of a nested branch. As a
consequence, you cannot nest two projects if they both nest the same project
somewhere within them. This limitation may be removed in the future. In the
meantime, consider restructuring things so that each project is only nested once (and
leverage symbolic links as appropriate). In most programming environments, having
different parts of the project using different versions of a library is an integration no-no
anyhow, so enforcing one common revision is the right way to prevent this from
happening.

At the moment, nested branches need to be incorporated as a whole. Filtered views
can to used to restrict the set of files and directories logically seen. Currently though,
filtered views are a lens onto a tree: they do not delete other files and the exposed
files/directories must have the same paths as they do in the original branch. In the
future, we may add support for nesting and moving selected files from a (read-only)
nested branch something like this:

bzr nested DIR --file LICENSE --file doc/README: :README
bzr commit -m "change which files are nested from project DIR"

If you require this feature, please contact us with your needs.

7 of 7 08/05/09 01:49



