Getting performance out of python
With notes from bzr

Robert Collins
robertc@robertcollins.net

SLUG August 2007

Robert Collins robertc@robertcollins.net Getting performance out of python

Python is slow. ..

Python is slow. . .

Recursive fibonacci sequence

Robert Collins robertc@robertcollins.net Getting performance out of python

Python is slow. ..

Python is slow. . .

Recursive fibonacci sequence

def fib(n):
if n <= 1:
return 1
return 1 + fib(n-1) + fib(n-2)

print fib(35)

Robert Collins robertc@robertcollins.net Getting performance out of python

Python is slow. ..

But really

Iterative fibonacci sequence

Robert Collins robertc@robertcollins.net Getting performance out of python

Python is slow. ..

But really

Iterative fibonacci sequence

def fib(n):
a, b=1,1
for x in range(n):
a, b=Db, 1 +a+b
return a

print fib(35)

Robert Collins robertc@robertcollins.net Getting performance out of python

Python is slow. ..

It's how you use it

http://www.diveintopython.org/

Robert Collins robertc@robertcollins.net Getting performance out of python

http://www.diveintopython.org/

Python is slow. ..

It's how you use it

http://www.diveintopython.org/

Robert Collins robertc@robertcollins.net Getting performance out of python

http://www.diveintopython.org/

Python is slow. ..

» Measure

Robert Collins robertc@robertcollins.net Getting perform

Python is slow. ..

» Measure

» Write understandable code

Robert Collins robertc@robertcollins.net Getting performance out of python

Python is slow. ..

» Measure
» Write understandable code

» Use the standard library

Robert Collins robertc@robertcollins.net Getting performance out of python

Python is slow. ..

» Measure
» Write understandable code
» Use the standard library

» Use primitive types freely

Robert Collins robertc@robertcollins.net Getting performance out of python

Python is slow. ..

» Optimise unless it is needed

Robert Collins robertc@robertcollins.net Getting performance out of python

Python is slow. ..

» Optimise unless it is needed

» Use heavily recursive algorithms

Robert Collins robertc@robertcollins.net Getting performance out of python

Python is slow. ..

» Optimise unless it is needed
» Use heavily recursive algorithms
» Hide reality

Robert Collins robertc@robertcollins.net Getting performance out of python

Python is slow. ..

» Optimise unless it is needed
» Use heavily recursive algorithms
» Hide reality

» Overly generalise

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink
Do Less
C

Approaches

Tackle the problem in a different way

Robert Colli

robertc@robertcollins.net Getting performance out of python

Rethink
Do Less
C

Approaches

Tackle the problem in a different way
log -v

push

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink
Do Less
©

Approaches

Reality Bites

Most slow programs are slow due to interactions with the real
world:

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink
Do Less
©

Approaches

Reality Bites

Most slow programs are slow due to interactions with the real
world:

disk

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink
Do Less
©

Approaches

Reality Bites

Most slow programs are slow due to interactions with the real
world:

disk

network

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink
Do Less
©

Approaches

Silly numbers

» Making a tuple: 0.04 usec.

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink
Do Less
©

Approaches

Silly numbers

» Making a tuple: 0.04 usec.
» Making a list: 0.21 usec.

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink
Do Less
©

Approaches

Silly numbers

» Making a tuple: 0.04 usec.
» Making a list: 0.21 usec.

» Function calls: 0.22-0.29 usec.

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink
Do Less
©

Approaches

Silly numbers

>
>
>
>

Making a tuple: 0.04 usec.

Making a list: 0.21 usec.

Function calls: 0.22-0.29 usec.
Making a dict statically: 0.53 usec.

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink
Do Less
©

Approaches

Silly numbers

Making a tuple: 0.04 usec.

Making a list: 0.21 usec.

Function calls: 0.22-0.29 usec.
Making a dict statically: 0.53 usec.

vV v v v Y

Making an object with slots: 1.12 usec.

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink
Do Less
©

Approaches

Silly numbers

Making a tuple: 0.04 usec.

Making a list: 0.21 usec.

Function calls: 0.22-0.29 usec.

Making a dict statically: 0.53 usec.
Making an object with slots: 1.12 usec.

vV vV v vV VvY

Making an object without slots: 1.39 usec.

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink
Do Less
©

Approaches

Silly numbers

Making a tuple: 0.04 usec.

Making a list: 0.21 usec.

Function calls: 0.22-0.29 usec.

Making a dict statically: 0.53 usec.
Making an object with slots: 1.12 usec.
Making an object without slots: 1.39 usec.

vV V. vV V. v VY

Making a dict statically: 2.12 usec.

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink
Do Less
©

Approaches

Better examples

» EAFP v LBYL

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink
Do Less
©

Approaches

Better examples

» EAFP v LBYL
» Matching types

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink
Do Less
©

Approaches

Better examples

» EAFP v LBYL
» Matching types
» Cold cache 10

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink
Do Less
©

Approaches

Better examples

» EAFP v LBYL

» Matching types

» Cold cache 10

» Death of 1000 cuts

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink

Approaches Do Less

Last Resort!

> pyrex

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink

Approaches Do Less

Last Resort!

> pyrex

> rctypes

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink

Approaches Do Less

Last Resort!

> pyrex
» rctypes

» ctypes

Robert Collins robertc@robertcollins.net Getting performance out of python

Rethink

Approaches Do Less

Last Resort!

> pyrex
> rctypes
> ctypes
» C api

Robert Collins robertc@robertcollins.net Getting performance out of python

Isprof

Tools timeit

Where is my program spending its time?

Robert Collins robertc@robertcollins.net Getting performance out of python

Isprof

Tools timeit

Where is my program spending its time?

$ bzr diff -r 40..50

Robert Collins robertc@robertcollins.net Getting performance out of python

Isprof

Tools timeit

$ bzr --lsprof diff -r 40..50

Robert Colli

robertc@robertcollins.net Getting performance out of python

Isprof

Tools timeit

$ bzr --lsprof-file foo.callgrind diff -r 40..50

Eile View Go Settings Help

=0+ Q00 [%+ < [Tk -]
run_argv_ali bzrlib.con is:454

SR :] Types ‘Qallers ‘AII Callers ‘Sgurce ICaIIeeMap I
Incl. Self Called |Fu=

0 0.00 0
=102.83 0.00 1ar
=w102.83 0.00 1 mic
m100.42 0.00 1md

mm 96.14 0.02 36mg

mm 96.12 0.05 36m_

mm 95.45 0.04 36m_ ree_read_locked << _show_diff_trees bzrlib.diff:
= 93.69 0.02 36u_ || [string=>:1 382

= 93.40 0.11 974m_

ma 92.78 0.07 289m_ l

92,75 0.31 974.?' iion_tree bzrlib.

ms 92,40 047 5357mit msifary:l()Bg

mw 91.79m68.75 430

= 81.02 0.00 135mg l

= 69.96 0.00 lus 12.02 % (17 x)
= 69.16 0.00 ll7@ &

€1 oD M WCaIIGraph ICaIIees ‘All Callees |A55emj< ’

prof.callgrind [1] - Total Ticks Cost: 5 516

Robert Collins robertc@robertcollins.net Getting perform

e out of python

Isprof

Tools timeit

File View Go Settings Help

O~ @_Qv v%'-}.@ Ticks -

*| _buffer_all bzrlib.index:248
Search: (No Grouping) |-

Types |Callers |All Callers Source |Callee Map

ncly Seli Callcd gl 2 buffer_all bzrlib.index:248 C191.79 %
=wi102.96 0.00 (0)mr 1 -
=wi102.83 0.00 1 sy
jig;jz ggg 11; <method 'split' of 'str' obje... | <method 'appen... <len> ‘Dﬂ
el 96.14 0.02 3619 _
el 96.12 0.05 36m_
== 95.45 0.04 36 i
= 93.60 0.02 360 _buﬁer_al;:grllh.lndex:
mw 93.40 011 974m_
== 9278 007 289:_ / \
w9275 031 974 mit
mu 92.40 047 5357mit <method 'split' of 'str' <method 'append' of 'list'
objects> objects>
= 81.02 0.00 135mg 3
m 69.96 0.00 lus b
= 69.16 0.00 1w [e
n T Caller Map Call Graph | Callees All Callees |Asseml|«|»

prof.callgrind [1] - Total Ticks Cost: 5 516

Robert Collins robertc@robertcollins.net Getting perform

Isprof
Tools timeit

adhoc python use

from bzrlib.lsprof import profile
_, stats = profile(list, t._iter_changes(t.basis_ tree()))

stats.sort()
stats.pprint ()

Robert Collins robertc@robertcollins.net Getting performance out of python

Isprof
Tools timeit

timeit

Whats the fastest way to write 1IMB of data?

Robert Collins robertc@robertcollins.net Getting performance out of python

Isprof
Tools timeit

timeit

Whats the fastest way to write 1IMB of data?

$ python -m timeit -s ’onek = "A"¥1024’
-s ’lines=[onek]*1024’
"f = file(’/dev/null’, ’wb’)"
"for line in lines: f.write(line);"
"f.close()"

1000 loops, best of 3: 1.03 msec per loop

1GB/second

Robert Collins robertc@robertcollins.net Getting performance out of python

Isprof
Tools timeit

$ python -m timeit -s ’onek = "A"¥1024’
-s ’lines=[onek]*1024°
’onem = "".join(lines)’
"f = file(’/dev/null’, ’wb’)"
"f.write(onem)"
"f.close()"

1000 loops, best of 3: 628 usec per loop
1.6GB /second

Robert Collins robertc@robertcollins.net Getting performance out of python

Isprof
timeit

fit the api to the data

$ python -m timeit -s ’onek = "A"%1024’
-s ’lines=[onek]*1024°
"f = file(’/dev/null’, ’wb’)"
"f.writelines(lines)"
"f.close()"

1000 loops, best of 3: 510 usec per loop
2GB/second

Robert Collins robertc@robertcollins.net Getting performance out of python

Isprof
Tools timeit

but if the data fits better

$ python -m timeit -s ’onek = "A"x1024’
-s ’lines=[onek]*1024’
-s ’onem = "".join(lines)’
"f = file(’/dev/null’, ’wb’)"
"f.write(onem)"
"f.close()"

10000 loops, best of 3: 19.4 usec per loop
50GB/second

Robert Collins robertc@robertcollins.net Getting performance out of python

Questions?

The End

The End

Robert Collins robertc@robertcollins.net Getting perfori of python

Questions?
The End

Questions?

Questions?

Robert Collins robertc@robertcollins.net Getting performance out of python

	Speed
	Python is slow…

	Approaches
	Rethink
	Do Less
	C

	Tools
	lsprof
	timeit

	The End
	Questions?

