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Python is slow. ..

Python is slow. . .

Recursive fibonacci sequence
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Python is slow. ..

Python is slow. . .

Recursive fibonacci sequence

def fib(n):
if n <= 1:
return 1
return 1 + fib(n-1) + fib(n-2)

print fib(35)
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Python is slow. ..

But really

Iterative fibonacci sequence
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Python is slow. ..

But really

Iterative fibonacci sequence

def fib(n):
a, b=1,1
for x in range(n):
a, b=Db, 1 +a+b
return a

print fib(35)
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Python is slow. ..

It's how you use it

http://www.diveintopython.org/
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It's how you use it
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Robert Collins robertc@robertcollins.net Getting performance out of python


http://www.diveintopython.org/

Python is slow. ..

» Measure
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Python is slow. ..

» Measure

» Write understandable code
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Python is slow. ..

» Measure
» Write understandable code

» Use the standard library
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Python is slow. ..

» Measure
» Write understandable code
» Use the standard library

» Use primitive types freely
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Python is slow. ..

» Optimise unless it is needed
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Python is slow. ..

» Optimise unless it is needed

» Use heavily recursive algorithms
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Python is slow. ..

» Optimise unless it is needed
» Use heavily recursive algorithms
» Hide reality
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Python is slow. ..

» Optimise unless it is needed
» Use heavily recursive algorithms
» Hide reality

» Overly generalise
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Rethink
Do Less
C

Approaches

Tackle the problem in a different way
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Rethink
Do Less
C

Approaches

Tackle the problem in a different way
log -v

push
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Rethink
Do Less
©

Approaches

Reality Bites

Most slow programs are slow due to interactions with the real
world:
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Rethink
Do Less
©

Approaches

Reality Bites

Most slow programs are slow due to interactions with the real
world:

disk
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Rethink
Do Less
©

Approaches

Reality Bites

Most slow programs are slow due to interactions with the real
world:

disk

network
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Rethink
Do Less
©

Approaches

Silly numbers

» Making a tuple: 0.04 usec.
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Approaches

Silly numbers

» Making a tuple: 0.04 usec.
» Making a list: 0.21 usec.
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Rethink
Do Less
©

Approaches

Silly numbers

» Making a tuple: 0.04 usec.
» Making a list: 0.21 usec.

» Function calls: 0.22-0.29 usec.
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Approaches

Silly numbers

>
>
>
>

Making a tuple: 0.04 usec.

Making a list: 0.21 usec.

Function calls: 0.22-0.29 usec.
Making a dict statically: 0.53 usec.
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Do Less
©

Approaches

Silly numbers

Making a tuple: 0.04 usec.

Making a list: 0.21 usec.

Function calls: 0.22-0.29 usec.
Making a dict statically: 0.53 usec.

vV v v v Y

Making an object with slots: 1.12 usec.
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Approaches

Silly numbers

Making a tuple: 0.04 usec.

Making a list: 0.21 usec.

Function calls: 0.22-0.29 usec.

Making a dict statically: 0.53 usec.
Making an object with slots: 1.12 usec.

vV vV v vV VvY

Making an object without slots: 1.39 usec.
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Do Less
©

Approaches

Silly numbers

Making a tuple: 0.04 usec.

Making a list: 0.21 usec.

Function calls: 0.22-0.29 usec.

Making a dict statically: 0.53 usec.
Making an object with slots: 1.12 usec.
Making an object without slots: 1.39 usec.

vV V. vV V. v VY

Making a dict statically: 2.12 usec.
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Rethink
Do Less
©

Approaches

Better examples

» EAFP v LBYL
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Approaches

Better examples

» EAFP v LBYL
» Matching types
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Approaches

Better examples

» EAFP v LBYL
» Matching types
» Cold cache 10
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Rethink
Do Less
©

Approaches

Better examples

» EAFP v LBYL

» Matching types

» Cold cache 10

» Death of 1000 cuts
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Rethink

Approaches Do Less

Last Resort!

> pyrex

Robert Collins robertc@robertcollins.net Getting performance out of python



Rethink

Approaches Do Less

Last Resort!

> pyrex

> rctypes
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Rethink

Approaches Do Less

Last Resort!

> pyrex
» rctypes

» ctypes
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Rethink

Approaches Do Less

Last Resort!

> pyrex
> rctypes
> ctypes
» C api
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Isprof

Tools timeit

Where is my program spending its time?
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Isprof

Tools timeit

Where is my program spending its time?

$ bzr diff -r 40..50
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Isprof

Tools timeit

$ bzr --lsprof diff -r 40..50
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Isprof

Tools timeit

$ bzr --lsprof-file foo.callgrind diff -r 40..50

Eile View Go Settings Help
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prof.callgrind [1] - Total Ticks Cost: 5 516
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Isprof

Tools timeit

File View Go Settings Help
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Isprof
Tools timeit

adhoc python use

from bzrlib.lsprof import profile
_, stats = profile(list, t._iter_changes(t.basis_ tree()))

stats.sort()
stats.pprint ()
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Isprof
Tools timeit

timeit

Whats the fastest way to write 1IMB of data?
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Isprof
Tools timeit

timeit

Whats the fastest way to write 1IMB of data?

$ python -m timeit -s ’onek = "A"¥1024’
-s ’lines=[onek]*1024’
"f = file(’/dev/null’, ’wb’)"
"for line in lines: f.write(line);"
"f.close()"

1000 loops, best of 3: 1.03 msec per loop

1GB/second
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Isprof
Tools timeit

$ python -m timeit -s ’onek = "A"¥1024’
-s ’lines=[onek]*1024°
’onem = "".join(lines)’
"f = file(’/dev/null’, ’wb’)"
"f.write(onem)"
"f.close()"

1000 loops, best of 3: 628 usec per loop
1.6GB /second
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Isprof
timeit

fit the api to the data

$ python -m timeit -s ’onek = "A"%1024’
-s ’lines=[onek]*1024°
"f = file(’/dev/null’, ’wb’)"
"f.writelines(lines)"
"f.close()"

1000 loops, best of 3: 510 usec per loop
2GB/second
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Isprof
Tools timeit

but if the data fits better

$ python -m timeit -s ’onek = "A"x1024’
-s ’lines=[onek]*1024’
-s ’onem = "".join(lines)’
"f = file(’/dev/null’, ’wb’)"
"f.write(onem)"
"f.close()"

10000 loops, best of 3: 19.4 usec per loop
50GB/second
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Questions?

The End

The End
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